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Abstract: Pyruvic acid is an organic compound used in various fields (e.g., the pharmaceutical,
cosmetic, food, and chemical industries) and subject to constantly growing demand. Pyruvic acid
is liquid at room temperature, rendering manipulation less straightforward. Furthermore, in the
liquid phase, pyruvic acid is air-sensitive. We here present a multi-component crystal engineering
strategy to render pyruvic acid solid under ambient conditions, focusing on cocrystallization and salt
formation. Out of 73 screened cocrystal and salt formers, eight were found to form novel crystalline
forms with pyruvic acid. Four of these were studied in detail, with pyruvic acid stable in a solid
phase at temperatures up to 120 ◦C. These results illustrate the effectiveness of cocrystallization as a
tool to convert unstable liquid compounds into stable crystalline solid forms.

Keywords: pyruvic acid; cocrystallization; crystal engineering; stabilization; solidification

1. Introduction

Compared to liquids, solids are often intrinsically more stable to temperature fluctu-
ations, and show reduced air sensitivity, resulting in a longer shelf-life [1]. Furthermore,
solids are easier to handle during transport and in manufacturing processes [2]. This is part
of the reason why solids are often preferred in the food and pharmaceutical industries. The
solid–liquid nature of a given compound is, however, not free of choice, as it depends on
the intrinsic melting temperature of the compound.

Pyruvic acid (Figure 1), also known as 3-oxopropanoic or α-ketopropionic acid, shows
a low melting temperature of 11.8 ◦C. Under standard conditions, pyruvic acid appears
as an amber viscous liquid which is corrosive and air-sensitive. Indeed, pyruvic acid
polymerizes via an aldol-like condensation reaction in aqueous solutions [3,4]. In addition
to being involved in major energy metabolic pathways such as glycolysis, gluconeogenesis,
the Krebs cycle, or fermentation [4], pyruvic acid is also a valuable starting material for
the synthesis of various pharmaceuticals (such as L-alanine, L-tyrosine, L-tryptophan,
L-DOPA, etc.), food additives, cosmetics, polymers, and crop protection agents. It is also
used on its own as a flavouring agent to give a sour taste to foods, and for the treatment of
acne [4,5].

Considering its wide applicability, it would be interesting to be able to transform
pyruvic acid into a solid form. In this context, the inorganic salt formation of pyruvic acid
has already been successfully applied, with calcium pyruvate used as a food supplement
claimed to enhance physical endurance and to induce fat loss [6].

In this paper, we use a different approach to inorganic salt formation, focusing on
multi-component crystal engineering, crystallizing pyruvic acid with organic compounds,
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leading to cocrystals as well as salt and salt cocrystal. Cocrystallization [7,8] is a use-
ful tool that has already been used to alter the melting point [9–13], solubility and dis-
solution rate [14–19], but also the stability [20,21], and mechanical properties of target
compounds [22]. Moreover, it is an often-applied approach to control polymorphism,
hygroscopicity, or deliquescence [23–26]. In this report, we use cocrystal engineering to
obtain solid forms comprising pyruvic acid with improved physical properties.
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Figure 1. Chemical structure of pyruvic acid (oxygen atoms in red).

2. Materials and Methods
2.1. Materials

Pyruvic acid (CAS: 121-17-3; >97%), carbamazepine (CAS: 298-46-4; >97%), and hy-
poxanthine (CAS: 68-94-0; >98%) were purchased from TCI Europe N.V. (Zwijndrecht,
Belgium), 4-nitrobenzamide (CAS: 619-80-7; 98%) and theophylline (CAS: 58-55-9; ≥99%)
were acquired from MERCK (Hoeilaart, Belgium), adenine (CAS: 73-24-5; 99%) and ison-
icotinamide (CAS: 1453-82-3; 99%) were obtained from Thermo Fisher GmbH (Dreieich,
Germany), and caffeine (CAS: 58-08-2; 98.5%) and nicotinamide (CAS: 98-92-0; 99%) were
bought from Acros Organics (Belgium). Solvents were commercially available from VWR
International BV (Brecht, Belgium). All the materials were used as received, without any
further purification.

2.2. Solid Forms Screening by Grinding

A total of 73 cocrystal and salt formers typically used in cocrystallization and salt
formation were selected among carboxylic acids, amides, amino acids, purines and pyrimi-
dine (derivatives), and profens. The screening was performed through neat grinding with
a MM 400 Mixer Mill grinder manufactured by RETSCH (Haan, Germany), equipped with
two grinding jars, each able to contain five Eppendorf tubes of 2 mL. The tubes were filled
with an equimolar amount (0.3 mmol) of pyruvic acid (PA) and cocrystal or salt formers
(CCFs), and 4 small glass beads (Ø 3 mm). The grinding program was set for 30 min at a
beating frequency of 30 Hz. The resulting ground powders were analysed by X-ray pow-
der diffraction. For the suspected multicomponent crystals of pyruvic acid with caffeine,
theophylline, and hypoxanthine, the grinding experiments were repeated using different
ratios ranging from 1:1 to 1:4 in order to increase the probability of obtaining cocrystals.
The grinding experiments with 1:4 ratios were the only ones that gave conclusive results
inciting further study.

2.3. Single Crystal Growth

Single crystals were obtained by preparing undersaturated solutions of an equimolar
amount (0.3 mmol) of PA and CCFs in a suitable amount of solvent (from 1 to 3 mL). The
solutions were left to evaporate slowly (from 3 to 10 days) at room temperature, and single
crystals were retrieved. The solvents tested include 2-propanol (IPA), acetone (ACTN), ace-
tonitrile (ACN), chloroform (CHCl3), dichloromethane (DCM), diethyl ether (DEE), ethanol
(EtOH), ethyl acetate (EtOAc), methanol (MeOH), tert-butanol (t-BuOH), tetrahydrofu-
ran (THF), and water (H2O). Suitable crystals of the 1:1 pyruvic acid-4-nitrobenzamide
cocrystal were obtained in ethyl acetate, whereas crystals were harvested from isopropanol
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for the 1:1 pyruvic acid-carbamazepine cocrystal, from ethanol for the 1:1 pyruvic acid-
isonicotinamide salt, and finally from acetonitrile for the 2:3 pyruvic acid-nicotinamide
salt cocrystal.

2.4. Congruency Experiments

Congruency experiments were performed through slurry crystallization. Slurry exper-
iments were achieved by suspending equimolar amounts (0.5 mmol) of PA and CCFs in a
solvent at 25 ◦C. The suspensions were stirred at 650 rpm for 3 to 4 days at 25 ◦C in sealed
vials, using a Cooling Thermomixer HLC. After 1h of stirring, each vial was seeded with
the corresponding ground powders to assure seeds of potential cocrystals were present.
After having reached equilibrium, the powders were filtered, washed, dried, and analysed
using PXRD.

2.5. Powder X-ray Diffraction (PXRD)

X-ray diffraction measurements were conducted on a Siemens D5000 diffractometer
equipped with a Cu cathode (λ = 1.5418 Å), operating at 40 kV and 40 mA and using a Bragg
Brentano geometry. X-ray patterns were recorded from 5 to 50◦ in 2θ angles values, with an
increment step of 0.02◦ and an integration time of 2 s (rate of 0.6◦/min). Simulated patterns
of the known starting compounds were calculated from their single crystal structures with
the software Mercury 4.2.0 [27].

2.6. Single Crystal Structure Determination

Single crystal X-ray diffraction (SCXRD) analysis was carried out using a MAR345
image plate detector using Mo Kα radiation from an Incoatec microfocus source with
Montel focusing mirrors. Images were integrated with CrysAlisPRO, and the implemented
absorption correction was applied [28]. Structure solution was carried out by dual space
direct methods (SHELXT) [29], and the structure was further refined against F2 using
SHELX-2018/3 [30]. Symmetry analysis and validation were checked using PLATON [31].
Pictures were made using the molecular visualization software Mercury 4.2.0 [27].

2.7. Thermogravimetric Analysis (TGA)

Thermogravimetric analyses were performed on a Mettler Toledo TGA-STDA 851e,
from 25 to 400 ◦C, at a scanning rate of 10 ◦C·min−1. The solid samples (5 to 10 mg) were
placed in aluminium oxide crucibles. The purge gas was nitrogen, with a continuous flow
rate of 50 mL·min−1. The data were treated with the STARe 12.12 software.

2.8. Proton Nuclear Magnetic Resonance (1H NMR)
1H NMR spectra were recorded on a Bruker-300 MHz spectrometer. The powders

obtained from the slurry experiments were solubilised in deuterated solvents. 1H NMR
chemical shifts are reported in parts per million (ppm) relative to the chemical shift of
the peak of the deuterated solvent used, chloroform-d (CDCl3; 7.26 ppm) or DMSO-d6

((CD3)2SO; 2.50 ppm). Spectral multiplicities are noted as follows: singlet = s, doublet = d,
triplet = t, quartet = q and multiplet = m.

2.9. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry experiments were carried out from 25 to a maximum
of 160 ◦C, with a scanning rate of 5 ◦K·min−1 on a Mettler Toledo DSC 821e. The solid
samples (5 to 10 mg) were placed in aluminium pans with perforated lids. The purge gas
used was nitrogen, with a continuous flow rate of 50 mL·min−1. The data were treated
with the STARe 12.12 software.
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3. Results and Discussion
3.1. Cocrystal Screening

Over 70 cocrystal and salt formers (CCFs) (see full list in Supplementary Materials
Table S1) were screened with pyruvic acid by neat grinding. These CCFs were chosen using
their potential to form non-covalent bonding intermolecular interactions, such as hydrogen
bonds, with pyruvic acid, and more precisely their ability to form supramolecular synthon
with pyruvic acid’s carboxylic acid group. Figure 2 illustrates the supramolecular building
blocks that are generally found in pyruvic acid’s solid forms, which may be composed of
the same functional groups, such as for the homosynthons formed by CCFs’ molecules
with each other (Figure 2A), or different functional groups, such as for the heterosynthons
between pyruvic acid and its CCF (Figure 2B) [32,33]. Therefore, the cocrystal screening
list focuses on compounds containing carboxylic acids, amino acids, and amides, with a
particular focus on compounds which are GRAS (generally recognized as safe) [34–37].

Crystals 2023, 13, x FOR PEER REVIEW 4 of 16 
 

 

2.9. Differential Scanning Calorimetry (DSC) 
Differential scanning calorimetry experiments were carried out from 25 to a maxi-

mum of 160 °C, with a scanning rate of 5 °K·min−1 on a Mettler Toledo DSC 821e. The solid 
samples (5 to 10 mg) were placed in aluminium pans with perforated lids. The purge gas 
used was nitrogen, with a continuous flow rate of 50 mL·min−1. The data were treated with 
the STARe 12.12 software.  

3. Results and Discussion 
3.1. Cocrystal Screening 

Over 70 cocrystal and salt formers (CCFs) (see full list in SI, Supplementary Materials 
Table S1) were screened with pyruvic acid by neat grinding. These CCFs were chosen us-
ing their potential to form non-covalent bonding intermolecular interactions, such as hy-
drogen bonds, with pyruvic acid, and more precisely their ability to form supramolecular 
synthon with pyruvic acid’s carboxylic acid group. Figure 2 illustrates the supramolecular 
building blocks that are generally found in pyruvic acid’s solid forms, which may be com-
posed of the same functional groups, such as for the homosynthons formed by CCFs’ mol-
ecules with each other (Figure 2A), or different functional groups, such as for the hetero-
synthons between pyruvic acid and its CCF (Figure 2B) [32,33]. Therefore, the cocrystal 
screening list focuses on compounds containing carboxylic acids, amino acids, and amides, 
with a particular focus on compounds which are GRAS (generally recognized as safe) [34-
37].  

 
Figure 2. Examples of supramolecular synthons found in pyruvic acid’s solid forms, as discussed in 
this study. (A) Homosynthon formed by two molecules of CCF. (B) Heterosynthons formed between 
one molecule of pyruvic acid and two molecules of CCF. Oxygen atoms in red, nitrogen atoms in 
blue. 

Comparing the PXRD pattern of the ground products with that of the solid parent 
compound, new solid forms were observed with eight CCFs (Figure 3), with five more 
samples undergoing amorphization. For the former, four single crystals were sought to 
fully establish the salt and (salt) cocrystals’ formation. 

Figure 2. Examples of supramolecular synthons found in pyruvic acid’s solid forms, as discussed in
this study. (A) Homosynthon formed by two molecules of CCF. (B) Heterosynthons formed between
one molecule of pyruvic acid and two molecules of CCF. Oxygen atoms in red, nitrogen atoms in blue.

Comparing the PXRD pattern of the ground products with that of the solid parent
compound, new solid forms were observed with eight CCFs (Figure 3), with five more
samples undergoing amorphization. For the former, four single crystals were sought to
fully establish the salt and (salt) cocrystals’ formation.

Figure 3. Chemical structure of the CCFs that led to changes in PXRD patterns upon grinding with
pyruvic acid. Oxygen atoms in red, nitrogen atoms in blue.

Here, we confirm the formation of two cocrystals, one salt and one salt cocrystal
through single crystal formation. This was the case for 4-nitrobenzamide (1), carbamazepine
(2), isonicotinamide (3), and nicotinamide (4). Multicomponent crystals such as cocrystal,
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salt or salt cocrystal are also suspected for adenine (5), caffeine (6), hypoxanthine (7), and
theophylline (8), but no single crystal has been obtained so far (see Figures S1–S4 in the
SI). The main crystallographic parameters are summarized in Table 1, with a detailed
discussion of each below. Full crystallographic data are given in the SI (Supplementary
Materials, Tables S2 to S5).

Table 1. Main crystallographic parameters of pyruvic acid salt and (salt) cocrystals.

Solid forms 1:1 Pyruvic Acid-
4-Nitrobenzamide

1:1 Pyruvic Acid-
Carbamazepine

1:1 Pyruvic Acid-
Isonicotinamide

2:3 Pyruvic Acid-
Nicotinamide

Abbrev. PANB PACBZ PAINAM PANAM

Structural formula C7H6N2O3, C3H4O3 C15H12N2O, C3H4O3 C6H7N2O, C3H3O3
2(C6H7N2O),2(C3H3O3),

C3H4O3

FW 254.19 324.33 210.19 210.19

Crystal system Primitive
Monoclinic

Primitive
Monoclinic

Primitive
Monoclinic

Primitive
Monoclinic

Space group P21/n P21/n P21/n P21/n

a, b and c (Å)
5.3463(5), 19.6423(14),

10.8234(7)
5.3912(6),16.6752(15),

18.2383(18)
3.8349(6), 33.160(5),

7.6010(11)
3.82010(12), 33.2921(9),

9.5234(2)

α, β and γ (◦) 90, 90.316(7), 90 90, 97.324(10), 90 90, 97.015(13), 90 90, 98.606(3), 90

Cell vol. (Å3) 1136.59 1626.23 959.348 1197.54

Z 4 4 4 2

3.2. Structural and Thermal Characterization of Salt and (Salt) Cocrystals
3.2.1. 1:1 Pyruvic acid-4-Nitrobenzamide Cocrystal (PANB)

Single crystals of the 1:1 Pyruvic Acid-4-Nitrobenzamide cocrystal were obtained by
slow evaporation from ethyl acetate. PANB crystallizes in the primitive monoclinic P21/n
space group and contains four molecules per unit cell. Pyruvic acid and 4-nitrobenzamide
molecules bind through four different hydrogen bonds (Figure 4A). This structure is defined
as a cocrystal; the acid hydrogen of pyruvic acid may be located in the electron density
map and is engaged in a hydrogen bond with the carbonyl group of the amide moiety.
Moreover, pyruvic acid’s C-O bond distances are not identical (1207(3) and 1308(3) Å). All
four hydrogen bonds have D1

1(2) finite patterns, according to Etter’s graph-set notation
(Table 2) [32,33].

Table 2. Hydrogen bonds in the 1:1 pyruvic acid-4-nitrobenzamide cocrystal.

Interatomic Distances (Å) Angles (◦)
Descriptors Donors H· · · Acceptors D-H H· · ·A D· · ·A D-H· · ·A

D1
1(2) a N11 H11A O22 0.86 2.14 2.982(3) 164

D1
1(2) b N11 H11B O26 0.86 2.31 3.138(3) 161

D1
1(2) c O23 H23 O12 0.82 1.78 2.589(3) 168

D1
1(2) a’ N11 H11A O22 0.86 2.50 2.912(3) 110

These interactions result in three coupled intermolecular ring hydrogen-bonding
patterns involving the primary amides of 4-nitrobenzamide. A first, an R4

4(14) ring is
formed between the two acceptor carbonyl moieties of pyruvic acid and the two donor
moieties of the NH2- group of the primary amide of 4-nitrobenzamide (following the a
and b descriptors through the > a < b > a < b path). A second ring motif R2

2(8) is found
between the acceptor carbonyl moiety of the carboxylic acid of pyruvic acid and one
donor moiety of the NH2- group of the primary amide of 4-nitrobenzamide, as well as
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between the acceptor carbonyl moiety of the primary amide of 4-nitrobenzamide and
the donor hydroxyl moiety of the carboxylic acid of pyruvic acid (following the a and c
descriptors through the > a < c path). A third ring pattern R4

4(18) is observed between a
4-nitrobenzamide and a pyruvic acid molecule following the b and c descriptors, through
the > b > c > b > c path. These hydrogen bonding features lead to an overall 3D « zigzag
» network, as shown in Figure 4C. The simulated PXRD pattern matches that obtained
during the grinding experiment, showing the same solid form was obtained (Figure 5),
albeit there being some parent compound remaining in the ground powder.
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A bulk cocrystal material can be obtained from a 1:1 slurry in acetonitrile, ethyl acetate
or tert-butanol. 1H NMR analysis (Supplementary Materials, Figure S5) of this powder
confirms the 1:1 stoichiometry. Upon heating (Supplementary Materials, Figures S9 and
S13), the solid is stable up to 90 ◦C, at which a first weight loss starts occurring. Full
degradation then occurs at 190 ◦C. The weak signals in the DSC analysis point towards a
degradation of the solid form, with no melt occurring.

3.2.2. 1:1 Pyruvic Acid-Carbamazepine Cocrystal (PACBZ)

Suitable crystals were grown from isopropanol through evaporative crystallization,
allowing the confirmation by SCXRD of a 1:1 cocrystal. PACBZ crystallises in a primitive
monoclinic P21/n space group, containing four molecules per unit cell. The resolved
crystal structure exhibits some static disorder, and we here describe the structure with only
one of the orientations of pyruvic acid (Figure 6), as the other orientation is equivalent.
Each carbamazepine molecule is shown to share four hydrogen bonds with two different
molecules of pyruvic acid, and each molecule of pyruvic acid shares four hydrogen bonds
with two different molecules of carbamazepine. The acid hydrogen in the pyruvic acid was
located in the electron density maps and is involved in an acid–amide dimer heterosynthon.
The C-O bond lengths of pyruvic acid molecules are, moreover, not identical (1.19(2) and
1.31(2) Å). All hydrogen bonds each have D1

1(2) finite patterns, as detailed in Table 3.
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As for the cocrystal between pyruvic acid and 4-nitrobenzamide, these latter first-level
interactions result in three coupled intermolecular ring hydrogen-bond patterns, mainly
involving the primary amides of carbamazepine. The first molecule of carbamazepine is
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linked by two hydrogen bonds to the same pyruvic acid molecule through an R2
2(8) ring

feature formed on the one hand between an acceptor carbonyl moiety of pyruvic acid and
a donor moiety of the NH2- group of the primary amide of carbamazepine (following the
a descriptor, through the > a < c path), and on the other hand between a donor hydroxyl
moiety of pyruvic acid and an acceptor carbonyl moiety of the primary amide of carba-
mazepine (following the c descriptor, through the > a < c path). For the same carbamazepine
molecule, another hydrogen bond is formed with a second pyruvic acid molecule, between
the acceptor carbonyl moiety of the carboxylic acid of pyruvic acid and the donor NH2-
moiety of the primary amide of carbamazepine. This last interaction is involved in a
second R4

4(14) hydrogen-bonding ring pattern, following the path > a < b > a < b, using the
a and b descriptors. One last ring pattern R4

4(18) can also be defined by using the c and
b descriptors, through the > b > c > b > c path. As shown in Figure 6C, a combination of
these patterns generates a 3D « zigzag » network. The simulated PXRD pattern matches
that obtained during the grinding experiment, showing the same solid form was obtained
(Figure 7), albeit there being some parent compound remaining in the ground powder.

Table 3. Hydrogen bonds in the 1:1 pyruvic acid-carbamazepine cocrystal.

Interatomic Distances (Å) Angles (◦)
Descriptors Donors H· · · Acceptors D-H H· · ·A D· · ·A D-H· · ·A

D1
1(2) a N18 H18A O22B 0.86 2.27 3.019(17) 145

D1
1(2) b N18 H18B O25B 0.86 2.32 3.101(19) 152

D1
1(2) c O23 H23B O17 0.82 1.71 2.515(11) 165

D1
1(2) a’ N18 H18A O22B 0.86 2.54 2.990(19) 114
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The bulk powder can be obtained in solvents such as 2-propanol, acetonitrile,
dichloromethane and ethyl acetate, using a ratio of one equivalent of carbamazepine to four
equivalents of pyruvic acid. 1H NMR (Supplementary Materials, Figure S6) confirms the 1:1
stoichiometry. Thermal analysis (Supplementary Materials, Figures S10 and S14) indicates
a melting (DSC) occurring at 100 ◦C, followed by an immediate degradation (TGA).

3.2.3. 1:1 Pyruvic Acid-Isonicotinamide Salt (PAINAM)

Single crystals obtained from ethanol show a 1:1 multi-component crystal between
pyruvic acid and isonicotinamide. PAINAM crystallises in the primitive monoclinic P21/n
space group and contains four molecules in the unit cell. Strong hydrogen bonds are usually
formed between carboxylic acids, such as the one of pyruvic acid and N-heterocyclic
hydrogen-bond acceptors, e.g., the pyridine group of isonicotinamide, and can even form
a salt if the proton is completely transferred from the acid to the base. Electron density
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analysis has shown that the proton of the carboxylic acid group of pyruvic acid is found
on the pyridine nitrogen atom of isonicotinamide, defining this solid form as a salt. The
protonated pyridine has, moreover, a C-N-C bond angle of over 120◦ [38]. Nevertheless,
pyruvic acid’s C-O bond distances are not identical (1214(6) and 1292(6) Å), which means
PAINAM can be found in the grey area of the salt–cocrystal continuum, lying between a
true salt and a true cocrystal.

Isonicotinamide molecules are linked together via two hydrogen bonds through their
primary amide groups by an R2

2(8) ring feature, following the b descriptor, as detailed in
Table 4, and illustrated in Figure 8, more precisely through the donor -NH2 moiety of a
primary amide and the acceptor carbonyl moiety of another primary amide. Every isoni-
cotinamide molecule is also shown to share two hydrogen bonds with two different pyruvic
acid molecules, and these hydrogen bonds each have a D1

1(2) finite pattern following the
a or the c descriptors. The first hydrogen bond is formed between the donor NH- moiety
of a pyridine ring (protonated isonicotinamide) and the acceptor carbonyl moiety of a
carboxylic acid (pyruvate), following the descriptor a. The second hydrogen bond links the
donor NH2- moiety of an amide group (isonicotinamide) and the acceptor carbonyl moiety
of a carboxylic acid (pyruvic acid) following the c descriptor.
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(B) Crystal packing view along the c*-axis (view down reciprocal cell axis c*). (C) Crystal packing
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Table 4. Hydrogen bonds in the 1:1 pyruvic acid-isonicotinamide salt.

Interatomic Distances (Å) Angles (◦)

Descriptors Donors H· · · Acceptors D-H H· · ·A D· · ·A D-H· · ·A

D1
1(2) a N13 H13 O3 0.86 1.72 2.566(5) 169

D1
1(2) c N19 H19B O2 0.86 2.07 2.894(5) 159

R2
2(8) > b > b N19 H19A O18 0.86 2.07 2.929(5) 179

These interactions result in a finite pattern D3
3(17) following the a and b descriptors

(< a > b > a). Another path is also described through a D3
3(9) finite pattern, following the

c and b descriptors (< c > b > c). The last Etter graph is identified between pyruvic acid
and isonicotinamide molecules through C2

2(11) intermolecular hydrogen bonds, which link
one pyruvate molecule to two isonicotinamide molecules, following the a and c descriptors
(> a < c). Overall, these bonding patterns generate a 3D layered structure, as shown
in Figure 8C. The simulated PXRD pattern matches that obtained during the grinding
experiment, showing the same solid form was obtained (Figure 9), albeit some parent
compound remains in the ground powder.

Crystals 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 9. PXRD calculated diffraction pattern of pyruvic acid-isonicotinamide salt (PAINAM) and 
of isonicotinamide, and experimental patterns of the ground powder. 

The bulk powder was obtained from several solvents: 2-propanol, acetonitrile, di-
chloromethane, ethanol, ethyl acetate, methanol, tert-butanol, and water. 1H NMR analy-
sis confirms a 1:1 stoichiometry, validating the SCXRD results (Supplementary Materials, 
Figure S7). Thermal analysis shows a melt (Supplementary Materials, Figure S15) fol-
lowed by immediate degradation (Supplementary Materials, Figure S11) at about 120 °C.  

2:3. Pyruvic Acid-Nicotinamide Salt Cocrystal (PANAM) 
Single crystals of the 2:3 pyruvic acid-nicotinamide were obtained from acetonitrile. 

PANAM crystallises in the monoclinic P21/n space group, with the asymmetric unit con-
taining one fully occupied nicotinamide molecule and a fully occupied pyruvic acid mol-
ecule, as well as a half-occupied pyruvic acid molecule found disordered on an inversion 
centre. The following description relates to either of the equivalent orientation of the py-
ruvic acid molecule, as shown in Figure 10. In this structure, two types of pyruvic acid can 
be found: deprotonated or protonated. The former links to the pyridine group of nicotin-
amide, with C-O bonds of similar lengths (1.219(3) and 1.251(2) Å), and refinement of the 
electron density, showing the proton to be closer to the pyridine nitrogen atom. Further-
more, the protonated pyridine has a C-N-C bond angle of 121.82°. In contrast, the pyruvic 
acid molecule not bound to nicotinamide shows no proton transfer, with C-O and C=O 
bond lengths of, respectively, 1.202 and 1.294 Å. PANAM can therefore be defined as a 
salt cocrystal, being a cocrystal between pyruvic acid and the pyruvic acid-nicotinamide 
salt. 

 

Figure 9. PXRD calculated diffraction pattern of pyruvic acid-isonicotinamide salt (PAINAM) and of
isonicotinamide, and experimental patterns of the ground powder.

The bulk powder was obtained from several solvents: 2-propanol, acetonitrile,
dichloromethane, ethanol, ethyl acetate, methanol, tert-butanol, and water. 1H NMR analy-
sis confirms a 1:1 stoichiometry, validating the SCXRD results (Supplementary Materials,
Figure S7). Thermal analysis shows a melt (Supplementary Materials, Figure S15) followed
by immediate degradation (Supplementary Materials, Figure S11) at about 120 ◦C.

3.2.4. 2:3 Pyruvic Acid-Nicotinamide Salt Cocrystal (PANAM)

Single crystals of the 2:3 pyruvic acid-nicotinamide were obtained from acetonitrile.
PANAM crystallises in the monoclinic P21/n space group, with the asymmetric unit contain-
ing one fully occupied nicotinamide molecule and a fully occupied pyruvic acid molecule,
as well as a half-occupied pyruvic acid molecule found disordered on an inversion centre.
The following description relates to either of the equivalent orientation of the pyruvic
acid molecule, as shown in Figure 10. In this structure, two types of pyruvic acid can be
found: deprotonated or protonated. The former links to the pyridine group of nicotinamide,
with C-O bonds of similar lengths (1.219(3) and 1.251(2) Å), and refinement of the electron
density, showing the proton to be closer to the pyridine nitrogen atom. Furthermore, the
protonated pyridine has a C-N-C bond angle of 121.82◦. In contrast, the pyruvic acid
molecule not bound to nicotinamide shows no proton transfer, with C-O and C=O bond
lengths of, respectively, 1.202 and 1.294 Å. PANAM can therefore be defined as a salt
cocrystal, being a cocrystal between pyruvic acid and the pyruvic acid-nicotinamide salt.
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Figure 10. Focus on structural features of the salt cocrystal PANAM. (A) Crystal packing view along
the a-axis for the first orientation. (B) Crystal packing view along the a-axis for the second orientation.
(C) Hydrogen bond arrangement view along the a-axis (with disorder). Oxygen atoms in red, nitrogen
atoms in blue.

In the structure, protonated nicotinamide molecules form chains of molecules that are
surrounded by pyruvic acid/pyruvate molecules. As described in Table 5, each protonated
nicotinamide molecule is linked to two other protonated nicotinamide molecules via hydro-
gen bonds through their primary amide groups, more precisely through the donor -NH2
moiety of a primary amide and the acceptor carbonyl moiety of another primary amide, fol-
lowing the c descriptor, in a C1

1(4) chain pattern. Each nicotinamide molecule is also linked
to two pyruvate molecules, also in D1

1(2) finite patterns. The first hydrogen bond is found
between the donor NH- moiety of a pyridine ring of a protonated nicotinamide molecule
and the acceptor carbonyl moiety of a carboxylate of a pyruvate molecule, following the
descriptor a. The second hydrogen bond is formed between the donor NH2- moiety of an
amide group of a protonated nicotinamide molecule and the acceptor carbonyl moiety of a
pyruvate molecule, following the b descriptor. Pyruvate molecules have the role of linkers
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between two molecules of protonated nicotinamide, but are also bound to a pyruvic acid
molecule through a D1

1(2) hydrogen bond finite pattern, following the d descriptor.

Table 5. Hydrogen bonds in the 2:3 pyruvic acid-nicotinamide salt cocrystal.

Interatomic Distances (Å) Angles (◦)
Descriptors Donors H· · · Acceptors D-H H· · ·A D· · ·A D-H· · ·A

D1
1(2) a N18 H18A O22B 0.86 2.27 3.019(17) 145

D1
1(2) b N18 H18B O25B 0.86 2.32 3.101(19) 152

D1
1(2) c O23 H23B O17 0.82 1.71 2.515(11) 165

D1
1(2) a’ N18 H18A O22B 0.86 2.54 2.990(19) 114

These bonds lead to C1
2(8) intermolecular patterns, which link one pyruvate molecule

to two nicotinamide molecules, following > a < b path or a D3
3(15) finite pattern, which

binds a nicotinamide molecule to another nicotinamide molecule and a pyruvate molecule,
following the < a > c > a path. Other paths are also found, such as through the D2

2(5)
finite pattern following the a and d descriptors (> a < d), as well as through the D3

3(9)
finite pattern following the b and c descriptors (< b > c > b). The ultimate Etter graph is
identified around a pyruvate linker molecule following an a > b > d path. The chain of
protonated nicotinamide molecules forms, simply overlapping layers of molecules. The
simulated PXRD pattern (Figure 11) shows the same form was found during the grinding
experiments), albeit some parent compound remains in the ground powder.
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Figure 11. Normalised PXRD patterns. Calculated diffraction patterns of pyruvic acid-nicotinamide
salt cocrystal (PANAM) and nicotinamide, and the experimental pattern of the ground powder.

Bulk 2:3 pyruvic acid-nicotinamide was obtained from 2-propanol and ethyl acetate. 1H
NMR analysis validates a 2:3 stoichiometry (Supplementary Materials, Figure S8). PANAM
shows a melting temperature of 73.4 ◦C (Supplementary Materials, Figure S16), with degrada-
tion of the melt occurring at around 90 ◦C (Supplementary Materials, Figure S12).

Table 6 summarizes the four cases discussed above, highlighting the potential of
cocrystallisation and salt formation to enhance the thermal stability of pyruvic acid. An
example of TGA and DSC combination can be found Supplementary Materials, Figure S17.
In general, the solid powders remained thermally stable up to temperatures between 70 and
120 ◦C, depending on the nature of the cocrystal or salt former with a melting/degradation
point much higher than the starting material (11.8 ◦C). These results prove that crystal
engineering is a useful tool to raise APIs melting points and thermally stabilize liquid
compounds into different crystalline forms, which are a stable and convenient way to
transport and store a molecule. Undergoing growing demand, the solidification of pyruvic
acid could in the future facilitate the handling of this liquid compound at room temperature.
This work could pave the way for the establishment of a general method for solidifying
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low-melting compounds. The latter would be very useful industrially, since drugs are
usually favoured in a solid dosage form.

Table 6. Solid forms identified for pyruvic acid, together with the melting temperatures or degrada-
tion temperatures ranges.

Cocrystal/Salt Former Ratio Formed Solid M.P./Degradation Range (◦C)

4-Nitrobenzamide 1:1 Cocrystal 90–100
Carbamazepine 1:1 Cocrystal 100
Isonicotinamide 1:1 Salt 120–130

Nicotinamide 2:3 Salt cocrystal 73

4. Conclusions

In this study, we highlight the potential of crystal engineering to stabilize liquid
compounds such as pyruvic acid by playing on the nature of the cocrystal and salt formers.
Pyruvic acid cocrystal and salt screening led to the identification of eight novel solid forms.
Among these, four systems (with 4-nitrobenzamide, carbamazepine, isonicotinamide and
nicotinamide) were confirmed by single crystal analysis, with four other solid forms (with
adenine, caffeine, hypoxanthine and theophylline) also likely forming multicomponent
crystals. The thermic stability of the confirmed solid forms of pyruvic acid was evaluated,
showing the solid forms to be stable up to temperatures between 70 and 120◦C. Such solid
forms, with GRAS compounds, facilitate the handling of pyruvic acid in and potentially
widen its field of application to the pharmaceutical, cosmetic, food, and chemical industries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13050808/s1. CCDC 2258062-2258065 contains the sup-
plementary crystallographic data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures, accessed on 8
May 2023.
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